Strong middepth warming and weak radiocarbon imprints in the equatorial Atlantic during Heinrich 1 and Younger Dryas

نویسندگان

  • Syee Weldeab
  • Tobias Friedrich
  • Axel Timmermann
  • Ralph R. Schneider
چکیده

We present a benthic foraminiferal multiproxy record of eastern equatorial Atlantic (EEA) middepth water (1295m) covering the last deglacial. We show that EEA middepth water temperatures were elevated by 3.9 ± 0.5°C and 5.2 ± 1.2°C during Heinrich event 1 (H1) and Younger Dryas (YD), respectively. The radiocarbon content of the EEA middepth during H1 and YD is relatively low and comparable to the values of the pre-H1 episode and Bølling-Allerød, respectively. A transient Earth system model simulation, which mimics the observed deglacial Atlantic Meridional Overturning Circulation (AMOC) history, qualitatively reproduces the major features of the EEA proxy records. The simulation results suggest that fresh water-induced weakening of the AMOC leads to a vertical shift of the horizon of Southern Ocean-sourced water and a stronger influence of EEA sea surface temperatures via mixing. Our findings reaffirm the lack of a distinctive signature of radiocarbon depletion and therefore do not support the notion of interhemispheric exchanges of strongly radiocarbon-depleted middepth water across the tropical Atlantic during H1 and YD. Our temperature reconstruction presents a critical zonal and water depth extension of existing tropical Atlantic data and documents a large-scale and basin-wide warming across the thermocline and middepth of the tropical Atlantic during H1 and YD. Significant difference in the timing and pace of H1 middepth warming between tropical Atlantic and North Atlantic likely points to a limited role of the tropical Atlantic middepth warming in the rapid heat buildup in the North Atlantic middepth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Intermediate depth warming in the tropical Atlantic related to weakened thermohaline circulation: Combining paleoclimate data and modeling results for the last deglaciation

[1] Benthic foraminiferal oxygen isotope ratios from two sediment cores recovered at 426 and 1299 m water depth in the eastern and western tropical Atlantic show that a slowdown of the thermohaline circulation (THC) during Heinrich event H1 and the Younger Dryas was accompanied by rapid and intense warming of intermediate depth waters. Millennial-scale covariations of low paleosalinities in the...

متن کامل

Deglacial sea surface temperature and salinity increase in the western tropical Atlantic in synchrony with high latitude climate instabilities

A sediment core from the western tropical Atlantic covering the last 21,000 yr has been analysed for centennial scale reconstruction of sea surface temperature (SST) and ice volume-corrected oxygen isotopic composition of sea water (d18Oivc-sw) using Mg/Ca and dO of the shallow dwelling planktonic foraminifer Globigerinoides ruber (white). At a period between 15.5 and 17.5 kyr BP, the Mg/Ca SST...

متن کامل

Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation.

Recent theories for glacial-interglacial climate transitions call on millennial climate perturbations that purged the deep sea of sequestered carbon dioxide via a "bipolar ventilation seesaw." However, the viability of this hypothesis has been contested, and robust evidence in its support is lacking. Here we present a record of North Atlantic deep-water radiocarbon ventilation, which we compare...

متن کامل

Link between the North and South Atlantic during the Heinrich events of the last glacial period

High resolution benthic oxygen isotope records combined with radiocarbon datings, from cores retrieved in the North, Equatorial, and South Atlantic are used to establish a reliable chronostratigraphy for the last 60 ky. This common temporal framework enables us to study the timing of the sub-Milankovitch climate variability in the entire surface Atlantic during this period, as re#ected in plank...

متن کامل

Changes in North Atlantic radiocarbon reservoir ages during the Allerød and Younger Dryas.

Estimates of the radiocarbon age of seawater are required in correlations between marine and terrestrial records of the late Quaternary climate. We radiocarbon-dated marine shells and terrestrial plant remains deposited in two bays on Norway's west coast between 11,000 and 14,000 years ago, a time of large and abrupt climatic changes that included the Younger Dryas (YD) cold episode. The radioc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016